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Introduction
Next Generation Sequencing (NGS) is a set of techniques allowing to gather and analyse genomic and
transcriptomic data. In the following report transcriptomic (RNA sequencing) data will be analysed. During
the analysis a significance level of α = 0.05 was assumed.
sign.level <- 0.05

Analysis
Technical information
In the following analysis R 4.1.2 was used along with the server version of Rstudio. In order to extend
functionality of R additional libraries were used. Additionally knitr library was used to display tables and
figures present in this report.
library(Rsubread) # data alignment
library(limma) # DGE
library(edgeR) # DGE
library(DESeq2) # DGE
library(knitr) # generating tables and general formatting

Building index and mapping
At first Rsubread library was used for building a base-space index for reference sequence. TAIR9.fa file
contents were used as a reference sequence and the index has been named TAIR9g.
buildindex(

basename = "TAIR9g",
reference = "data/TAIR9.fa"

)

After building the index, reads were mapped onto the reference. As .fastq files contain data about reads,
they have been used as input for subjunc() function. The outputs were .bam files later used for counting
features.
# mapping WT_R1
subjunc(

index = "TAIR9g",
"data/WT_R1.fastq",
output_file = "WT_R1.bam",
nthreads = 4,
reportAllJunctions = TRUE,

)
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# mapping WT_R2
subjunc(

index = "TAIR9g",
"data/WT_R2.fastq",
output_file = "WT_R2.bam",
nthreads = 4,
reportAllJunctions = TRUE,

)
# mapping OE_1_R1
subjunc(

index = "TAIR9g",
"data/OE_1_R1.fastq",
output_file = "OE_1_R1.bam",
nthreads = 4,
reportAllJunctions = TRUE,

)
# mapping OE_1_R2
subjunc(

index = "TAIR9g",
"data/OE_1_R2.fastq",
output_file = "OE_1_R2.bam",
nthreads = 4,
reportAllJunctions = TRUE,

)

Counting genomic features
The reason for running featureCounts() is assigning sequence reads to genomic features (genomic region
with some annotated function). Previously generated .bam files were used to count genomic features.
fc <- featureCounts(

c(
"WT_R1.bam",
"WT_R2.bam",
"OE_1_R1.bam",
"OE_1_R2.bam"
),

annot.ext = "data/TAIR9.gtf",
isGTFAnnotationFile = TRUE,
juncCounts = TRUE,
nthreads = 4

)

The output was an object variable containing data about reads assigned to features and assignment statistics
such as seen below.

Table 1: Read counts for the first five loci in each sample.

WT_R1.bam WT_R2.bam OE_1_R1.bam OE_1_R2.bam
AT1G01010 128 91 36 70
AT1G01020 150 140 72 155
AT1G01030 49 35 33 42
AT1G01040 333 394 194 455
AT1G01050 691 499 295 471
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Table 2: Total counts in each sample sorted by status.

Status WT_R1.bam WT_R2.bam OE_1_R1.bam OE_1_R2.bam
Assigned 7822452 7869452 3897525 7358560
Unassigned_Unmapped 1784035 1744583 941327 2276256
Unassigned_Read_Type 0 0 0 0
Unassigned_Singleton 0 0 0 0
Unassigned_MappingQuality 0 0 0 0
Unassigned_Chimera 0 0 0 0
Unassigned_FragmentLength 0 0 0 0
Unassigned_Duplicate 0 0 0 0
Unassigned_MultiMapping 0 0 0 0
Unassigned_Secondary 0 0 0 0
Unassigned_NonSplit 0 0 0 0
Unassigned_NoFeatures 271136 257346 124273 246125
Unassigned_Overlapping_Length 0 0 0 0
Unassigned_Ambiguity 122377 128619 62475 119059

Majority of sequences in all of the samples were assigned to genomic features. However, there are some
fragments that are either unmapped and therefor cannot be assigned, do not overlap any features, overlap
two or more features or overlap so called meta-features.

Visualisation
The first step in visualising data was creating batch plots in order to get an overview of relations between
samples. Each point on each plot represents a single genomic site and has X and Y values equal to logarithm
of relevant counts.
c <- data.frame(fc$counts)
pairs(log10(c + 0.1), pch=".")
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Next, smooth scatter (heatmap) plots comparing two WT samples as well as WT to OE were created.
Heatmap was used in order to avoid overlapping points.
smoothScatter(

x = log10(c$WT_R1.bam + 0.1),
y = log10(c$WT_R2.bam + 0.1),
xlab = "WT_R1",
ylab = "WT_R2",
main = "scatter plot of WT_R1 vs WT_R2 features.",
pch = "."

)
abline(a=0,b=1,col="orange",lwd=2)
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smoothScatter(
x = log10(c$WT_R1.bam + 0.1),
y = log10(c$OE_1_R1.bam + 0.1),
xlab = "WT_R1",
ylab = "OE_R1",
main = "scatter plot of WT_R1 vs OE_R1 features.",
pch = "."

)
abline(a=0,b=1,col="orange",lwd=2)
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Then AT3G01150 locus was emphasized on the scatter plot as an example. It is depicted with a red x on the
figure below.
gene.sel <- "AT3G01150"
colors <- rep("black", times = dim(c)[1])
pchs <- rep(".", times = dim(c)[1])
names(pchs) <- names(colors) <- rownames(c)
colors[gene.sel] <- "red"
pchs[gene.sel] <- "+"

plot(
x = log10(c$WT_R1.bam + 0.1),
y = log10(c$OE_1_R1.bam + 0.1),
xlab = "WT_R1",
ylab = "OE_1_R1",
main = "scatter plot of WT_R1 vs OE_R1 features.",
pch = pchs,
col = colors

)
abline(a=0,b=1,col="orange",lwd=2)
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All pairs show more or less linear relation. There is however a slight decrease of counts in OE samples
compared to WT which is indicated by displacement of points relative to the orange line (y = x). Also, the
expression in OE_R2 sample is generally a little bit higher than in OE_R1.

Differential gene expression (DGE) analysis
limma

The first step of this part of analysis was to construct a new data set genes.merged with defined column
names. In further analyses the same data sets are used as for limma analysis.
genes.merged <- fc$counts[, c(3,4,1,2)] # change col order
colnames(genes.merged) <- c(

"OE_1_R1",
"OE_1_R2",
"WT_R1",
"WT_R2"

)

Then all samples were split into two categories: OE and WT and contrasts between the two were defined as
cm variable using limma::makeContrasts().
samples <- substr(colnames(genes.merged), 0, 2) # just like python slices
design <- data.frame(

OEs = ifelse(samples == "OE", 1, 0),
WTs = ifelse(samples == "WT", 1, 0)

)
cm <- makeContrasts(OEvsWT=OEs-WTs, levels=design)
print(cm)

## Contrasts
## Levels OEvsWT
## OEs 1
## WTs -1

Diferentially expressed genes were first assigned to dge variable. These were then normalized using
edgeR::calcNormFactors() (TMM normalization). TMM normalization adjusts library sizes based on
the assumption that most genes are not diferentially expressed. It ensures that the expression values are
comparable between sequences. The limma::voom() transformation allows creation of multidimentional
matrix containing weigth values. These values are then used by limma::lmFit() to create a linear model.
After that limma::contrasts.fit() was used to calculate coefficients for a given matrix and design. Bayes
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correction (limma::eBayes) smoothed out standard errors. The limma::topTable() created a table with
top rated genes. Benjamini-Hoechberg method was used in the means of p-value correction in order to get rid
of potential false positives. At last, genes with adjusted p-value < 0.05 were selected and assigned to rows in
the sign.genes data frame.
# TMM normalization
dge <- DGEList(counts = genes.merged)
dge <- calcNormFactors(dge)
# voom transformation
v <- voom(dge, design, plot=FALSE)
# linear model fit with limma
f.t <- lmFit(v, design)#, method="robust", maxit=9999
# contrasts fit
cf <- contrasts.fit(f.t, cm)
# Bayes corr
fe <- eBayes(cf, proportion = 0.01)
# Multiple testing corr
limma.countsTMMvoom.genes <- topTable(

fe,
number = Inf,
adjust.method = "BH",
sort.by = "none"

)
sign.genes <- limma.countsTMMvoom.genes[

which(limma.countsTMMvoom.genes$adj.P.Val < sign.level),
]

Table 3: Signifficantly different (Padj < 0.05) expression.

logFC AveExpr t P.Value adj.P.Val B
AT3G01150 5.999203 7.938799 16.26258 1.8e-06 0.0437794 -4.147031

As seen above, only one gene (AT3G01150) is significantly differentiating. This gene is indicated using a red
+ on a MA plot of OE vs WT below.
pchs <- rep(".", dim(limma.countsTMMvoom.genes)[1])
colors <- rep("black", dim(limma.countsTMMvoom.genes)[1])
names(pchs) <- names(colors) <- rownames(limma.countsTMMvoom.genes)
pchs[gene.sel] <- "+"
colors[gene.sel] <- "red"
plot(

limma.countsTMMvoom.genes$AveExpr,
limma.countsTMMvoom.genes$logFC,
col = colors,
pch = pchs,
xlab = "Average Expression",
ylab = "log(FC)",
main="MA plot of genes",

)
abline(h=0, col = "orange", lwd = 2)
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Merged information about transcripts (data/supplementary.RData file) was then loaded into the environment.
Previous steps in the means of normalization and transformations were repeated for this data set.
load(file = "data/supplementary.RData")

Table 4: First five rows of supplementary.RData

OE_1_R1 OE_1_R2 WT_R1 WT_R2
AT1G01010_ID1 83.673351 85.17584 142.173100 107.61582
AT1G01020_ID8 8.750743 18.41270 21.360060 20.55019
AT1G01020_ID9 37.910036 21.36570 22.675898 33.39722
AT1G01020_ID4 9.650110 14.02244 8.363400 15.10687
AT1G01020_ID5 11.817266 14.21590 8.250928 17.22066

samples <- substr(colnames(trans.merged),0,2)
design <- data.frame(

OEs=ifelse(samples=="OE",1,0),
WTs=ifelse(samples=="WT",1,0)

)
rownames(design) <- colnames(trans.merged)
cm <- makeContrasts(OEvsWT=OEs-WTs, levels=design)
dge <- DGEList(counts=trans.merged)
dge <- calcNormFactors(dge)
v = voom(dge,design, plot = FALSE)
f.t <- lmFit(v,design)
cf <- contrasts.fit(f.t, cm)
fe <- eBayes(cf, proportion = 0.01)
limma.counts.TMMvoom.trans <- topTable(

fe, number = Inf,
adjust.method = "BH",
sort.by = "none"

)
sign.trans <- limma.counts.TMMvoom.trans[

which(limma.counts.TMMvoom.trans$adj.P.Val<sign.level),
]
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Table 5: Significantly different transcripts.

logFC AveExpr t P.Value adj.P.Val B
AT3G01150_ID4 6.906772 7.675772 17.69561 0 0.00229 -4.20909

As seen above, there is only one significantly differentiating transcript (AT3G01150_ID4). It is shown as a
red + on a MA plot of transcripts below.
trans.sel <- "AT3G01150_ID4"
pchs <- rep(".", dim(limma.counts.TMMvoom.trans)[1])
cols <- rep("black", dim(limma.counts.TMMvoom.trans)[1])
names(pchs) <- names(cols) <- rownames(limma.counts.TMMvoom.trans)
pchs[trans.sel] <- "+"
cols[trans.sel] <- "red"
plot(

limma.counts.TMMvoom.trans$AveExpr,
limma.counts.TMMvoom.trans$logFC,
xlab = "Average Expression",
ylab="log(FC)",
main="MA plot of transcripts",
pch=pchs,
col=cols

)
abline(h=0,col="orange", lwd=2)
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Scatter plots of transcripts vs genes were prepared for both WT_R1 and OE_R1 samples. Significantly
differentiating transcripts were depicted with red +.
plot(

log10(genes.merged[mapping[,"genes"],3]+0.1),
log10(trans.merged[,3]+0.1),
xlab="genes",
ylab="transcript",
main="Scatter plot of transcripts vs genes in WT_R1",
pch=pchs,
col=cols

)
abline(a=0,b=1, col="orange", lwd=2)
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points(
log10(genes.merged[mapping[trans.sel,"genes"],3]+0.1),
log10(trans.merged[trans.sel,3]+0.1),
pch=pchs[trans.sel],
col=cols[trans.sel]

)
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plot(
log10(genes.merged[mapping[,"genes"],1]+0.1),
log10(trans.merged[,1]+0.1),
xlab="genes",
ylab="transcript",
main="Scatter plot of transcripts vs genes in OE_R1",
pch=pchs, col=cols

)
abline(a=0,b=1, col="orange", lwd=2)
points(

log10(genes.merged[mapping[trans.sel,"genes"],1]+0.1),
log10(trans.merged[trans.sel,1]+0.1),
pch=pchs[trans.sel],
col=cols[trans.sel]

)
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edgeR

The next step was to construct a DGEList object and run a series of statistical tests using edgeR. Notice
that this procedure is performed twice: for genes and transcripts. Both quasi-likelihood F-test and classic
likelihood ratio test were used to determine p-values.
group <- factor(c(2,2,1,1))
y <- DGEList(counts=genes.merged ,group=group)
keep <- filterByExpr(y)
y <- y[keep,,keep.lib.sizes=FALSE]
y <- calcNormFactors(y)
design <- model.matrix(~group)
y <- estimateDisp(y,design)

Firstly, the quasi-likelihood F-test was performed:
#To perform quasi-likelihood F-tests:
fit <- glmQLFit(y,design)
qlf <- glmQLFTest(fit,coef=2)
genes.QLF.tt<- topTags(qlf, n=Inf)
sum(genes.QLF.tt$table$FDR<sign.level)

## [1] 0

Secondly, the classic likelihood ratio test:
#To perform likelihood ratio tests:
fit <- glmFit(y,design)
lrt <- glmLRT(fit,coef=2)
genes.LR.tt<- topTags(lrt, n=Inf)
sum(genes.LR.tt$table$FDR<sign.level)

## [1] 5

Then, the previous steps were repeated for transcripts.
group <- factor(c(2,2,1,1))
y <- DGEList(counts=trans.merged ,group=group)
keep <- filterByExpr(y)
y <- y[keep,,keep.lib.sizes=FALSE]
y <- calcNormFactors(y)
design <- model.matrix(~group)
y <- estimateDisp(y,design)

Quasi-likelihood F-tests:
fit <- glmQLFit(y,design)
qlf <- glmQLFTest(fit,coef=2)
trans.QLF.tt<- topTags(qlf, n=Inf)
sum(trans.QLF.tt$table$FDR<sign.level)

## [1] 0

Classic likelihood ratio test:
fit <- glmFit(y,design)
lrt <- glmLRT(fit,coef=2)
trans.LR.tt<- topTags(lrt, n=Inf)
sum(trans.LR.tt$table$FDR<sign.level)
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## [1] 9

From the results above it can be deduced that there are no genes or transcripts that pass a quasi-likelihood
test, there are however 5 genes and 9 transcripts that pass classic likelihood test.

DESeq2

In DESeq2 Wald test is used to determine p-values.
condition <- factor(c("OE", "OE", "WT", "WT"))
coldata.genes <- data.frame(row.names = colnames(genes.merged), condition)
dds.genes <- DESeqDataSetFromMatrix(

countData = round(genes.merged),
colData = coldata.genes,
design = ~condition

)
dds.genes <- DESeq(dds.genes)
res.genes <- results(dds.genes)

Table 6: Significantly differentiating genes (DESeq2).

baseMean log2FoldChange lfcSE stat pvalue padj
AT1G43800 156.73939 3.468741 0.6349943 5.462633 0.0e+00 0.0005607
AT3G01150 8962.58903 -6.121532 0.4033756 -15.175762 0.0e+00 0.0000000
AT3G12500 205.87802 2.195659 0.4515427 4.862573 1.2e-06 0.0092329
AT5G35935 41.38681 3.123976 0.6662341 4.689006 2.7e-06 0.0164069

coldata.trans <- data.frame(row.names = colnames(trans.merged), condition)
dds.trans <- DESeqDataSetFromMatrix(

countData = round(trans.merged),
colData = coldata.trans,
design = ~condition

)
dds.trans <- DESeq(dds.trans)
res.trans <- results(dds.trans)

Table 7: Significantly differentiating genes (DESeq2).

baseMean log2FoldChange lfcSE stat pvalue padj
AT1G43800_ID1 158.61563 3.485717 0.7376612 4.725364 2.30e-06 0.0109561
AT2G36530_ID120 129.87219 -2.793770 0.6010623 -4.648055 3.40e-06 0.0109561
AT3G01150_ID4 8822.40283 -6.912164 0.5415206 -12.764359 0.00e+00 0.0000000
AT3G10970_ID10 105.73625 2.772445 0.6013669 4.610239 4.00e-06 0.0109561
AT3G51370_ID7 228.52462 -2.630701 0.6175238 -4.260080 2.04e-05 0.0342560
AT3G52220_ID3 121.06964 -2.707565 0.5906088 -4.584362 4.60e-06 0.0110261
AT4G01800_ID1 307.58196 2.680729 0.5700741 4.702423 2.60e-06 0.0109561
AT4G14880_ID12 188.11808 3.091633 0.6534722 4.731086 2.20e-06 0.0109561
AT4G14880_ID19 406.87575 2.868622 0.5782748 4.960655 7.00e-07 0.0076551
AT4G19410_ID16 158.65729 3.579034 0.7726093 4.632399 3.60e-06 0.0109561
AT4G24440_ID7 49.96931 -3.101744 0.6994112 -4.434794 9.20e-06 0.0200836
AT5G46210_ID7 103.39655 2.929204 0.6720951 4.358318 1.31e-05 0.0259654
AT5G52650_ID2 298.24973 2.569473 0.5968891 4.304774 1.67e-05 0.0303555
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As seen above, when using DESeq2 the results are 4 significantly differentiating genes and 13 transcripts. In
the tables above log2(FC) is a indicator of both down and up regulation.
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